Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers.

نویسندگان

  • Sebastian Meinhardt
  • Richard L C Vink
  • Friederike Schmid
چکیده

According to the lipid raft hypothesis, biological lipid membranes are laterally heterogeneous and filled with nanoscale ordered "raft" domains, which are believed to play an important role for the organization of proteins in membranes. However, the mechanisms stabilizing such small rafts are not clear, and even their existence is sometimes questioned. Here, we report the observation of raft-like structures in a coarse-grained molecular model for multicomponent lipid bilayers. On small scales, our membranes demix into a liquid ordered (lo) phase and a liquid disordered (ld) phase. On large scales, phase separation is suppressed and gives way to a microemulsion-type state that contains nanometer-sized lo domains in an ld environment. Furthermore, we introduce a mechanism that generates rafts of finite size by a coupling between monolayer curvature and local composition. We show that mismatch between the spontaneous curvatures of monolayers in the lo and ld phases induces elastic interactions, which reduce the line tension between the lo and ld phases and can stabilize raft domains with a characteristic size of the order of a few nanometers. Our findings suggest that rafts in multicomponent bilayers might be closely related to the modulated ripple phase in one-component bilayers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes

We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The ...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas.

Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilay...

متن کامل

Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy.

Lipid rafts, segregated domains with different lipid compositions, are thought to play crucial roles in processes such as protein sorting and signaling on cell membranes. Despite their postulated importance in membrane biology, direct observation of lipid rafts in cells remains a challenge. To deepen the understanding of the chemical and physical characteristics of segregated lipid phase domain...

متن کامل

Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.

The Helicobacter pylori vacuolating toxin VacA causes several effects on mammalian cells in vitro, including intracellular vacuolation, formation of pores in the plasma membrane and apoptosis. When added to cells, VacA becomes associated with detergent-resistant membranes, indicating that it binds preferentially to lipid rafts. In the present study, we have used atomic force microscopy to exami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 12  شماره 

صفحات  -

تاریخ انتشار 2013